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What is a polymer 7

Polymer = long chain of small molecules (monomers)
Interacts with a "stable" environment (heat bath).

Thermodynamics — canonical ensemble
At equilibrium, the probability of observing the polymer in an
internal state S with energy E(S) is given by

1
P(S) = Ee_E(S)/kBT
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What is a polymer 7

Polymer = long chain of small molecules (monomers)
Interacts with a "stable" environment (heat bath).

Thermodynamics — canonical ensemble
At equilibrium, the probability of observing the polymer in an
internal state S with energy E(S) is given by

1
P(S) = Ee_E(S)/kBT

kp is the Boltzmann constant, T is the temperature of the
system and Z is a normalizing constant (partition function).
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Mathematical model

polymer of length n «+— path of length n in Z¢
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Mathematical model

polymer of length n +— path of length n in Z¢

W, = {S = (8 € (ZN™ : V0 <i < n,|Sip1 — Sil1 = 1}
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Mathematical model

polymer of length n +— path of length n in Z¢
W, = {S = (8 € (ZN™ : V0 <i < n,|Sip1 — Sil1 = 1}

The path is taken according to the random walk law P, and then
weighted by its energy.
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weighted by its energy.
The energy is a map H,, : W,, — R} U {+o0} that modelizes
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Mathematical model

polymer of length n +— path of length n in Z¢
W, = {S = (8 € (ZN™ : V0 <i < n,|Sip1 — Sil1 = 1}

The path is taken according to the random walk law P, and then
weighted by its energy.
The energy is a map H,, : W,, — R} U {+o0} that modelizes
physical interactions

Polymer measure: Gibbs transformation of P given by
1 _
PI(S) = —ze P ()

n

with 8 = 1/kgT and Z? = E [e*BH"(S)] a normalizing constant.
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Annealed & Quenched polymer measure
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Annealed & Quenched polymer measure

random environment on (2, .#,P) — random Hamiltonian HY
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Annealed & Quenched polymer measure

random environment on (2, .#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model.
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Annealed & Quenched polymer measure

random environment on (2, .#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model.

e The quenched measure: we get a random Gibbs measure

n,w

P’ (S) = %B—BHZ(S)P(S)

n,w

which corresponds to a fixed realisation of the environment.
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Annealed & Quenched polymer measure

random environment on (2, .#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model.

e The quenched measure: we get a random Gibbs measure

1 w
P7.(8) = ——e PHROP(S)

which corresponds to a fixed realisation of the environment.
e The annealed measure: we get a deterministic measure

1 _gpw
Pi(8)= 5 [e BHAS)} P(S)

n

where the environment plays a part in the equilibrium (compromise).

S SORBONNE

UNIVERSITE

Vicolas Bouchot Localization of a polymer in a random environment -



Polymer in a Bernoulli percolation
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
Define R,,(S) = {So,...,Sn} = Sjo,5,) the range of S at time n.
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
Define R,,(S) = {So,...,Sn} = Sjo,5,) the range of S at time n.

random walk killed by O, — H]!(S) = +00lr, (s)n0, -0} -

The quenched measure is

1
Pn (S) ZY]
n,p

n,p

lisno,=2}P(S) =P(S|SN O, = 2)
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
Define R,,(S) = {So,...,Sn} = Sjo,5,) the range of S at time n.

random walk killed by O, — H]!(S) = +00lr, (s)n0, -0} -

The quenched measure is

1
zZl,

Py p(5) =

n,p ]]-{SOOP—Z}P(S) = P(S | S n Op == @)

The annealed measure is

1 1 _
PP(S) = ZT]EP [l{smp:g}] P(S) = Z—pe‘Rn(S)“Og“ p)P(S)

n
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Inhomogeneous Bernoulli percolation
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1, ~ Ber(p,) with i.i.d. (p.),eza-
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.

S SORBONNE

UNIVERSITE

Vicolas Bouchot Localization of a polymer in a random environment -



Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
Take p, = 1 — P~ where w, are i.i.d., the percolation is annealed
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
Take p, = 1 — P~ where w, are i.i.d., the percolation is annealed

1 1
PZ:UBJ(S) = Zh’ﬂ H (1 _pz)P(S) = Zh’ﬁ
"W ZeRL(S) nw

) )
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
Take p, = 1 — P~ where w, are i.i.d., the percolation is annealed

1 1
PZ:UBJ(S) = Zh’ﬂ H (1 _pz)P(S) = Zh’ﬁ
W LeR,(S) n,w

e )

This model is the random walk penalized by the sum of A — Sw,
sitting on the range, with quenched w,.
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Our model

Random walk in Z (law P) + environment w = (w,
(law PP) with E [wo] = 0,E [w}] =

)2ez i.i.d. variables
1
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Our model

Random walk in Z (law P) + environment w = (w
(law PP) with E [wo] = 0,E [w}] =

2z 1.1.d. variables

=)
1.

For h > 0, > 0, the quenched polymer measure is

1
Pﬁf(S) = Wexp( Z (ﬁwz—h))P(S).
n,h 2ERA(S)

Important: each energy cost is only taken once!
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Our model

Random walk in Z (law P) + environment w = (w
(law PP) with E [wo] = 0,E [w}] =

2z 1.1.d. variables

=)
1.

For h > 0, > 0, the quenched polymer measure is

1
Pﬁf(S) = Wexp( Z (ﬁwz—h))P(S).
n,h 2ERA(S)

Important: each energy cost is only taken once!

e 5=0: homogeneous environment, we allow h = h,, and write
P, =P n, — shrinking at a size f(hy,).
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Our model

Random walk in Z (law P) + environment w = (w, )¢z i.i.d. variables

=)
(law PP) with E [wo] = 0,E [w] = 1.

For h > 0, > 0, the quenched polymer measure is

w 1
n,h 2ERA(S)
Important: each energy cost is only taken once!

e 5=0: homogeneous environment, we allow h = h,, and write

P, =P n, — shrinking at a size f(hy,).

e (3 > 0: reach the sites with high values for w, avoid those with highly
negative values.
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Our model

Random walk in Z (law P) + environment w = (w,).ez 1.i.d. variables
(law PP) with E [wo] = 0,E [w] = 1.

For h > 0, > 0, the quenched polymer measure is

Pﬁf(S) —ﬁexp( Z (ﬁwz—h))P(S).

n,h 2ERA(S)

Important: each energy cost is only taken once!

e 5=0: homogeneous environment, we allow h = h,, and write
P, =P n, — shrinking at a size f(hy,).
e (3 > 0: reach the sites with high values for w, avoid those with highly
negative values.
We are interested in the edges localization, meaning asymptotics for

M, =min Sy, M;5 = maxS

nT ki R kn "

UNIVERSITE
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Homogeneous model (5 = 0): phase transition
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Homogeneous model (5 = 0): phase transition

2

1/3 3
Define T, = M;f — M, T = (%) and a,, = (T2)?* _
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Homogeneous model (S

1/3 x 1/6
Define T, = M;f — M, T = ("” ) and a,, = (Tp)? _ 1 <7}%2>

Theorem

e Assume that h, > n~?(logn)*? and lim n=/*h, =0, then

n—oo
T, —TF M+ d
<", ">->” (T, M),
(7% Trt n—-+oo

where T ~ N (0,1) and M ~ Z sin(my)1jo,1)(y)dy are independent.
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Homogeneous model (S

1/3 x 1/6
Define T, = M;f — M, T = ("”2) and a,, = (Tp)? _ 1 <7}%2>

Theorem

e Assume that h, > n~?(logn)*? and lim n=/*h, =0, then

n—oo
T, —TF M+ d
<", ">->” (T, M),
(7% Trt n—-+oo

where T ~ N (0,1) and M ~ Z sin(my)1jo,1)(y)dy are independent.

e Assume that lim n=Y/*h, = +00 and lim n'h, = 0.
n—oo n—oo

I(An)nz1 €{0,1},  lim Prp, (T — [Ty — 2] & An) =0.
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Influence of the disorder (5 > 0)
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

w,B

P
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

w,B

P
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

Pwyﬂ
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G

At first order, the size of the range is deterministic.
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

Pwyﬂ
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G

At first order, the size of the range is deterministic.
The main contribution to Z} is given by trajectories with range ~ c,n'/3.
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Localization
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
. w,B 1/3 { (1) (2) }
nhm Bnl/6 (log anh aF f2hchn > = sup (X, +X )

Chp—U
0<u<cp

with X, X two independent Brownian motions.
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
. wpB O 1/3) _ { (1) (2) }
w3 Bio (logZ"~h+2hch” > ofue, L Ko
with X, X two independent Brownian motions.

Furthermore, u, = arg max Xﬁl) + X(Q) is P-a.s. unique and

Ch—U
w€[0,cp]
1/3 +y Pk
n= /(M , M) — (—Usy Cp — Uy) P—a.s.
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
. wpB O 1/3) _ { (1) (2) }
w3 Bio (logZ"~h+2hch” > ofue, L Ko
with X, X two independent Brownian motions.

Furthermore, u, = arg max Xﬁl) + X(Q) is P-a.s. unique and

Ch—U
w€[0,cp]
1/3 +y Pk
n= /(M , M) — (—Usy Cp — Uy) P—a.s.

In particular, n='/3R,, — [~u.,c, — u,] (under Pi_’f, P—a.s.).
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
. wpB O 1/3) _ { (1) (2) }
i, s (los 728+ Ghawnt®) = sup (X094 X2}
with X, X two independent Brownian motions.

Furthermore, u, = arg max Xﬁl) + X(Q) is P-a.s. unique and

Ch—U
w€[0,cp]
1/3 +y Pk
n= /(M , M) — (—Usy Cp — Uy) P—a.s.

In particular, n='/3R,, — [~u.,c, — u,] (under P:‘L’_’f, P—a.s.).

The location of the range is P-deterministic: it only depends on the
realisation w through X, = X£1) + x®

Ch—U S SORBONNE
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Fluctuations around wu,
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Fluctuations around wu,

What is the scale/law of U, = M, + u.n'/3 or V,, = (cy, — u.)n'/® — M} ?
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Fluctuations around wu,

What is the scale/law of U, = M, + u.n'/3 or V,, = (cy, — u.)n'/® — M} ?

Theorem

Suppose E [|w0|3+77] < oo for some positive n, we have the P-a.s. convergence

. 2 w 3
lim ﬁn\{/g’ <log an + §hchnl/3 _ ﬁnl/GXu*) = sup {yw —ch,B (u + U)Q}

n— oo w,v

where Yy =Y, —Y_, — x(By + B,) with B a two-sided BES;, Y a
two-sided standard Brownian motion.
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Fluctuations around wu,

What is the scale/law of U, = M, + u.n'/3 or V,, = (cy, — u.)n'/® — M} ?

Theorem

Suppose E [|w0|3+77] < oo for some positive n, we have the P-a.s. convergence

\/5 w,B 1/6 2
b 55 (it - - 0.) st )
where Yy =Y, —Y_, — x(By + B,) with B a two-sided BES;, Y a
two-sided standard Brownian motion.

Moreover, (U, V) = argmax,, ,{Vu,v — ch,3(u+v)?} is P-a.s. well-defined,
unique, and we have

1 RN
370 (U Vi) —= — Uu,v) P—a.s.
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Fluctuations around wu,

What is the scale/law of U, = M, + u.n'/3 or V,, = (cy, — u.)n'/® — M} ?

Theorem

Suppose E [|w0|3+77] < oo for some positive n, we have the P-a.s. convergence

\/5 w,B 1/6 2
b 55 (it - - 0.) st )
where Vy» =Yy — Y_, — X(By + By) with B a two-sided BES3, Y a
two-sided standard Brownian motion.

Moreover, (U, V) = argmax,, ,{Vu,v — ch,3(u+v)?} is P-a.s. well-defined,
unique, and we have

1 RN
370 (Un, Vi) —— (U,V) P—a.s.

n— oo

Again, this is P-deterministic.
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WIP: Quenched Bernoulli and interlacements
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).

Theorem (Ding, Xu, 2019)

Write T for the hitting time of O, then there exist P-measurable regions U,,
distant from at least n(logn)~7 and with poly-logarithmic volume, and a
random time T,, = o(n) such that P (Sirncu, |7 >n) — 1.
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).

Theorem (Ding, Xu, 2019)

Write T for the hitting time of O, then there exist P-measurable regions U,,
distant from at least n(logn)~7 and with poly-logarithmic volume, and a
random time T,, = o(n) such that P (Sirncu, |7 >n) — 1.

Goal: replace O, by the random interlacement .#*,u > 0.
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).

Theorem (Ding, Xu, 2019)

Write T for the hitting time of O, then there exist P-measurable regions U,,
distant from at least n(logn)~7 and with poly-logarithmic volume, and a
random time T,, = o(n) such that P (Sirncu, |7 >n) — 1.

Goal: replace O, by the random interlacement .#*,u > 0.
& is a random subset of Z? caracterized by

P(KNI" = @) = e ucarlK]

with cap [K] = Y, c x Pa (S[1,400) N K = @) the capacity of K C Z%.
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).

Theorem (Ding, Xu, 2019)

Write T for the hitting time of O, then there exist P-measurable regions U,,
distant from at least n(logn)~7 and with poly-logarithmic volume, and a
random time T,, = o(n) such that P (Sirncu, |7 >n) — 1.

Goal: replace O, by the random interlacement .#*,u > 0.
& is a random subset of Z? caracterized by

P(KN.9% = @) = e~ ucarlk]
with cap [K] = Y, c x Pa (S[1,400) N K = @) the capacity of K C Z%.

Conjecture: There exist almost-empty regions % at distance n(logn)~* with
size (logn)* such that Siy(),n € Z-
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WIP: Quenched Bernoulli and interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).

Theorem (Ding, Xu, 2019)

Write T for the hitting time of O, then there exist P-measurable regions U,,
distant from at least n(logn)~7 and with poly-logarithmic volume, and a
random time T,, = o(n) such that P (Sirncu, |7 >n) — 1.

Goal: replace O, by the random interlacement .#*,u > 0.
& is a random subset of Z? caracterized by

P(KN.9% = @) = e~ ucarlk]
with cap [K] = Y, c x Pa (S[1,400) N K = @) the capacity of K C Z%.

Conjecture: There exist almost-empty regions % at distance n(logn)~* with
size (logn)* such that Siy(),n € Z-

Mostly done with the same ideas as Ding & Xu. S oRBO
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WIP: Annealed polymer in interlacement
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WIP: Annealed polymer in interlacement

The annealed partition function of H); = col{g, n.su) is given by

EP(R,NI"=2)=E |:e*ucap[72n]:|
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WIP: Annealed polymer in interlacement

The annealed partition function of H); = col{g, n.su) is given by
E[P(R,N 5" = 2)] = E [¢ ewlRe]]
Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

07 log E [e_ucap[m] s Fd).

n—-+oo
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WIP: Annealed polymer in interlacement

The annealed partition function of H); = col{g, n.su) is given by
E[P(R,N 5" = 2)] = E [¢ ewlRe]]
Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

07 log E [e_ucap[m] s Fd).

n—-+oo

Optimal strategy: fold into a ball of radius =< n'/¢ without filling it.
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WIP: Annealed polymer in interlacement

The annealed partition function of H); = col{g, n.su) is given by
E[P(R,N 5" = 2)] = E [¢ ewlRe]]
Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

07 log E [e_ucap[m] s Fd).

n—-+oo

Optimal strategy: fold into a ball of radius =< n'/¢ without filling it.

At distance r from the center, the walk locally resembles a random
interlacement with density oc cos?(r).
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WIP: Annealed polymer in interlacement

The annealed partition function of H); = col{g, n.su) is given by
E[P(R,N 5" = 2)] = E [¢ ewlRe]]
Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

07 log E [e_ucap[m] s Fd).

n—-+oo

Optimal strategy: fold into a ball of radius =< n'/¢ without filling it.

At distance r from the center, the walk locally resembles a random
interlacement with density oc cos?(r).

We conjecture a phase diagram for cap [R,,] when taking v = u(n) depending
on the asymptotics of u(n).
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Thank you for your
attention!



