Localization of a polymer in a random environment - Bernoulli & Interlacements

Nicolas Bouchot

Sorbonne Université, LPSM

IHP - Probabilités de Demain - 12 avril 2023

Polymer = long chain of small molecules (monomers)

- E

Polymer = long chain of small molecules (monomers) Interacts with a "stable" environment (heat bath).

- 14

Polymer = long chain of small molecules (monomers) Interacts with a "stable" environment (heat bath).

Thermodynamics \rightarrow canonical ensemble

4 Th

Polymer = long chain of small molecules (monomers) Interacts with a "stable" environment (heat bath).

Thermodynamics \rightarrow canonical ensemble At equilibrium, the probability of observing the polymer in an internal state S with energy E(S) is given by

$$P(S) = \frac{1}{Z}e^{-E(S)/k_BT}$$

Polymer = long chain of small molecules (monomers) Interacts with a "stable" environment (heat bath).

Thermodynamics \rightarrow canonical ensemble At equilibrium, the probability of observing the polymer in an internal state S with energy E(S) is given by

$$P(S) = \frac{1}{Z}e^{-E(S)/k_BT}$$

 k_B is the Boltzmann constant, T is the temperature of the system and Z is a normalizing constant (partition function).

polymer of length $n \leftrightarrow \text{path of length } n \text{ in } \mathbb{Z}^d$

3 X X 3 X

polymer of length
$$n \leftrightarrow$$
 path of length n in \mathbb{Z}^d
$$W_n = \left\{ S = (S_i)_{i=0}^n \in (\mathbb{Z}^d)^n : \forall 0 \le i < n, |S_{i+1} - S_i|_1 = 1 \right\}$$

polymer of length $n \leftrightarrow$ path of length n in \mathbb{Z}^d $W_n = \left\{ S = (S_i)_{i=0}^n \in (\mathbb{Z}^d)^n : \forall 0 \le i < n, |S_{i+1} - S_i|_1 = 1 \right\}$

The path is taken according to the random walk law \mathbf{P} , and then weighted by its energy.

polymer of length $n \leftrightarrow$ path of length n in \mathbb{Z}^d

$$W_n = \left\{ S = (S_i)_{i=0}^n \in (\mathbb{Z}^d)^n : \forall 0 \le i < n, |S_{i+1} - S_i|_1 = 1 \right\}$$

The path is taken according to the random walk law \mathbf{P} , and then weighted by its energy. The energy is a map $H_n: W_n \longrightarrow \mathbb{R}_+ \cup \{+\infty\}$ that modelizes

physical interactions

polymer of length $n \leftrightarrow$ path of length n in \mathbb{Z}^d

$$W_n = \left\{ S = (S_i)_{i=0}^n \in (\mathbb{Z}^d)^n : \forall 0 \le i < n, |S_{i+1} - S_i|_1 = 1 \right\}$$

The path is taken according to the random walk law \mathbf{P} , and then weighted by its energy. The energy is a map $H_n: W_n \longrightarrow \mathbb{R}_+ \cup \{+\infty\}$ that modelizes physical interactions

Polymer measure: Gibbs transformation of \mathbf{P} given by

$$\mathbf{P}_{n}^{\beta}(S) = \frac{1}{Z_{n}^{\beta}} e^{-\beta H_{n}(S)} \mathbf{P}(S)$$

with $\beta = 1/k_B T$ and $Z_n^{\beta} = \mathbf{E} \left[e^{-\beta H_n(S)} \right]$ a normalizing constant.

random environment on $(\Omega, \mathscr{F}, \mathbb{P}) \longrightarrow$ random Hamiltonian H_n^{ω}

B > 4 B >

random environment on $(\Omega, \mathscr{F}, \mathbb{P}) \longrightarrow$ random Hamiltonian H_n^{ω} We can define two polymer measures depending on the model.

random environment on $(\Omega, \mathscr{F}, \mathbb{P}) \longrightarrow$ random Hamiltonian H_n^{ω} We can define two polymer measures depending on the model.

• The quenched measure: we get a random Gibbs measure

$$\mathbf{P}_{n,\omega}^{\beta}(S) = \frac{1}{Z_{n,\omega}^{\beta}} e^{-\beta H_n^{\omega}(S)} \mathbf{P}(S)$$

which corresponds to a fixed realisation of the environment.

random environment on $(\Omega, \mathscr{F}, \mathbb{P}) \longrightarrow$ random Hamiltonian H_n^{ω} We can define two polymer measures depending on the model.

• The quenched measure: we get a random Gibbs measure

$$\mathbf{P}_{n,\omega}^{\beta}(S) = \frac{1}{Z_{n,\omega}^{\beta}} e^{-\beta H_n^{\omega}(S)} \mathbf{P}(S)$$

which corresponds to a fixed realisation of the environment.

• The annealed measure: we get a deterministic measure

$$\mathbb{P}_{n}^{\beta}(S) = \frac{1}{\mathbb{Z}_{n}^{\beta}} \mathbb{E}\left[e^{-\beta H_{n}^{\omega}(S)}\right] \mathbf{P}(S)$$

where the environment plays a part in the equilibrium (compromise).

ъ

Obstacle set $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$ i.i.d.

→ 4 ∃→

Obstacle set $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$ i.i.d. Define $\mathcal{R}_n(S) = \{S_0, \dots, S_n\} = S_{[0,n]}$ the range of S at time n.

4 E b

Obstacle set $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$ i.i.d. Define $\mathcal{R}_n(S) = \{S_0, \dots, S_n\} = S_{[0,n]}$ the range of S at time n.

random walk killed by $\mathcal{O}_p \longrightarrow H_n^\eta(S) = +\infty \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O}_p \neq \varnothing\}}.$

Obstacle set $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$ i.i.d. Define $\mathcal{R}_n(S) = \{S_0, \dots, S_n\} = S_{[0,n]}$ the range of S at time n.

 $\text{random walk killed by } \mathcal{O}_p \longrightarrow H^\eta_n(S) = +\infty \mathbbm{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O}_p \neq \varnothing\}}.$

The quenched measure is

$$\mathbf{P}_{n,p}^{\eta}(S) = \frac{1}{Z_{n,p}^{\eta}} \mathbb{1}_{\{S \cap \mathcal{O}_p = \varnothing\}} \mathbf{P}(S) = \mathbf{P}(S \mid S \cap \mathcal{O}_p = \varnothing)$$

Obstacle set $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$ i.i.d. Define $\mathcal{R}_n(S) = \{S_0, \dots, S_n\} = S_{[0,n]}$ the range of S at time n.

 $\text{random walk killed by } \mathcal{O}_p \longrightarrow H^\eta_n(S) = +\infty \mathbbm{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O}_p \neq \varnothing\}}.$

The quenched measure is

$$\mathbf{P}_{n,p}^{\eta}(S) = \frac{1}{Z_{n,p}^{\eta}} \mathbb{1}_{\{S \cap \mathcal{O}_p = \varnothing\}} \mathbf{P}(S) = \mathbf{P}(S \mid S \cap \mathcal{O}_p = \varnothing)$$

The annealed measure is

$$\mathbb{P}_n^p(S) = \frac{1}{\mathbb{Z}_n^p} \mathbb{E}_p\left[\mathbbm{1}_{\{S \cap \mathcal{O}_p = \varnothing\}}\right] \mathbf{P}(S) = \frac{1}{\mathbb{Z}_n^p} e^{|\mathcal{R}_n(S)| \log(1-p)} \mathbf{P}(S)$$

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$.

→

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$. \mathcal{O} obstacle set. The doubly quenched measure is

$$\mathbf{P}_n(S) = \frac{1}{Z_n} \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O} = \varnothing\}} \mathbf{P}(S) \quad \to \text{quite complicated!}$$

4 E 5

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$. \mathcal{O} obstacle set. The doubly quenched measure is

$$\mathbf{P}_n(S) = \frac{1}{Z_n} \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O} = \varnothing\}} \mathbf{P}(S) \quad \to \text{quite complicated!}$$

Natural: study the partially annealed models, meaning either the percolation or the parameters.

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$. \mathcal{O} obstacle set. The doubly quenched measure is

$$\mathbf{P}_n(S) = \frac{1}{Z_n} \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O} = \varnothing\}} \mathbf{P}(S) \quad \to \text{quite complicated!}$$

Natural: study the partially annealed models, meaning either the percolation or the parameters.

Take $p_z = 1 - e^{\beta \omega_z - h}$ where ω_z are i.i.d., the percolation is annealed

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$. \mathcal{O} obstacle set. The doubly quenched measure is

$$\mathbf{P}_n(S) = \frac{1}{Z_n} \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O} = \varnothing\}} \mathbf{P}(S) \quad \to \text{quite complicated!}$$

Natural: study the partially annealed models, meaning either the percolation or the parameters.

Take $p_z = 1 - e^{\beta \omega_z - h}$ where ω_z are i.i.d., the percolation is annealed

$$\mathbb{P}_{n,\omega}^{h,\beta}(S) = \frac{1}{\mathbb{Z}_{n,\omega}^{h,\beta}} \prod_{z \in \mathcal{R}_n(S)} (1-p_z) \mathbf{P}(S) = \frac{1}{\mathbb{Z}_{n,\omega}^{h,\beta}} e^{\sum_{z \in \mathcal{R}_n(S)} (\beta \omega_z - h)} \mathbf{P}(S)$$

Generalization: take independent $\eta_z \sim \text{Ber}(p_z)$ with i.i.d. $(p_z)_{z \in \mathbb{Z}^d}$. \mathcal{O} obstacle set. The doubly quenched measure is

$$\mathbf{P}_n(S) = \frac{1}{Z_n} \mathbb{1}_{\{\mathcal{R}_n(S) \cap \mathcal{O} = \varnothing\}} \mathbf{P}(S) \quad \to \text{quite complicated!}$$

Natural: study the partially annealed models, meaning either the percolation or the parameters.

Take $p_z = 1 - e^{\beta \omega_z - h}$ where ω_z are i.i.d., the percolation is annealed

$$\mathbb{P}_{n,\omega}^{h,\beta}(S) = \frac{1}{\mathbb{Z}_{n,\omega}^{h,\beta}} \prod_{z \in \mathcal{R}_n(S)} (1-p_z) \mathbf{P}(S) = \frac{1}{\mathbb{Z}_{n,\omega}^{h,\beta}} e^{\sum_{z \in \mathcal{R}_n(S)} (\beta \omega_z - h)} \mathbf{P}(S)$$

This model is the random walk penalized by the sum of $h - \beta \omega_z$ sitting on the range, with quenched ω_z .

(3) (4) (3)

- E

7/14

Random walk in \mathbb{Z} (law **P**) + environment $\omega = (\omega_z)_{z \in \mathbb{Z}}$ i.i.d. variables (law \mathbb{P}) with $\mathbb{E}[\omega_0] = 0, \mathbb{E}[\omega_0^2] = 1$.

Random walk in \mathbb{Z} (law **P**) + environment $\omega = (\omega_z)_{z \in \mathbb{Z}}$ i.i.d. variables (law \mathbb{P}) with $\mathbb{E}[\omega_0] = 0, \mathbb{E}[\omega_0^2] = 1$.

For $h > 0, \beta \ge 0$, the quenched polymer measure is

$$\mathbf{P}_{n,h}^{\omega,\beta}(S) := \frac{1}{Z_{n,h}^{\omega,\beta}} \exp\Big(\sum_{z \in \mathcal{R}_n(S)} \left(\beta \omega_z - h\right)\Big) \mathbf{P}(S) \,.$$

Important: each energy cost is only taken once!

Random walk in \mathbb{Z} (law **P**) + environment $\omega = (\omega_z)_{z \in \mathbb{Z}}$ i.i.d. variables (law \mathbb{P}) with $\mathbb{E}[\omega_0] = 0, \mathbb{E}[\omega_0^2] = 1$.

For $h > 0, \beta \ge 0$, the quenched polymer measure is

$$\mathbf{P}_{n,h}^{\omega,\beta}(S) := \frac{1}{Z_{n,h}^{\omega,\beta}} \exp\Big(\sum_{z \in \mathcal{R}_n(S)} \left(\beta \omega_z - h\right)\Big) \mathbf{P}(S) \,.$$

Important: each energy cost is only taken once!

• $\beta = 0$: homogeneous environment, we allow $h = h_n$ and write $\mathbf{P}_{n,h_n} = \mathbf{P}_{n,h_n}^{\omega,0} \to \text{shrinking at a size } f(h_n).$

→ 4 ∃→

Random walk in \mathbb{Z} (law **P**) + environment $\omega = (\omega_z)_{z \in \mathbb{Z}}$ i.i.d. variables (law \mathbb{P}) with $\mathbb{E}[\omega_0] = 0, \mathbb{E}[\omega_0^2] = 1$.

For $h > 0, \beta \ge 0$, the quenched polymer measure is

$$\mathbf{P}_{n,h}^{\omega,\beta}(S) := \frac{1}{Z_{n,h}^{\omega,\beta}} \exp\Big(\sum_{z \in \mathcal{R}_n(S)} \left(\beta \omega_z - h\right)\Big) \mathbf{P}(S) \,.$$

Important: each energy cost is only taken once!

• $\beta = 0$: homogeneous environment, we allow $h = h_n$ and write $\mathbf{P}_{n,h_n} = \mathbf{P}_{n,h_n}^{\omega,0} \to \text{shrinking at a size } f(h_n).$

• $\beta > 0$: reach the sites with high values for ω , avoid those with highly negative values.

3 N (3)

Random walk in \mathbb{Z} (law **P**) + environment $\omega = (\omega_z)_{z \in \mathbb{Z}}$ i.i.d. variables (law \mathbb{P}) with $\mathbb{E}[\omega_0] = 0, \mathbb{E}[\omega_0^2] = 1$.

For $h > 0, \beta \ge 0$, the quenched polymer measure is

$$\mathbf{P}_{n,h}^{\omega,\beta}(S) := \frac{1}{Z_{n,h}^{\omega,\beta}} \exp\Big(\sum_{z \in \mathcal{R}_n(S)} \left(\beta \omega_z - h\right)\Big) \mathbf{P}(S) \,.$$

Important: each energy cost is only taken once!

• $\beta = 0$: homogeneous environment, we allow $h = h_n$ and write $\mathbf{P}_{n,h_n} = \mathbf{P}_{n,h_n}^{\omega,0} \to \text{shrinking at a size } f(h_n).$

• $\beta > 0$: reach the sites with high values for ω , avoid those with highly negative values.

We are interested in the edges localization, meaning asymptotics for

$$M_n^- = \min_{k \le n} S_k , \ M_n^+ = \max_{k \le n} S_k$$

- 4 回 ト - 4 回 ト

< E

Define
$$T_n = M_n^+ - M_n^-$$
, $T_n^* = \left(\frac{n\pi^2}{h_n}\right)^{1/3}$ and $a_n = \frac{(T_n^*)^2}{\sqrt{3n\pi^2}} = \frac{1}{\sqrt{3}} \left(\frac{n\pi^2}{h_n^4}\right)^{1/6}$

< E

Define
$$T_n = M_n^+ - M_n^-$$
, $T_n^* = \left(\frac{n\pi^2}{h_n}\right)^{1/3}$ and $a_n = \frac{(T_n^*)^2}{\sqrt{3n\pi^2}} = \frac{1}{\sqrt{3}} \left(\frac{n\pi^2}{h_n^4}\right)^{1/6}$

Theorem

• Assume that
$$h_n \ge n^{-1/2} (\log n)^{3/2}$$
 and $\lim_{n \to \infty} n^{-1/4} h_n = 0$, then

$$\left(\frac{T_n - T_n^*}{a_n}, \frac{M_n^+}{T_n^*}\right) \xrightarrow[n \to +\infty]{(d)} (\mathcal{T}, \mathcal{M}),$$

where $\mathcal{T} \sim \mathcal{N}(0,1)$ and $\mathcal{M} \sim \frac{\pi}{2} \sin(\pi y) \mathbb{1}_{[0,1]}(y) dy$ are independent.

A B F A B F

Define
$$T_n = M_n^+ - M_n^-$$
, $T_n^* = \left(\frac{n\pi^2}{h_n}\right)^{1/3}$ and $a_n = \frac{(T_n^*)^2}{\sqrt{3n\pi^2}} = \frac{1}{\sqrt{3}} \left(\frac{n\pi^2}{h_n^4}\right)^{1/6}$

Theorem

• Assume that
$$h_n \ge n^{-1/2} (\log n)^{3/2}$$
 and $\lim_{n \to \infty} n^{-1/4} h_n = 0$, then

$$\left(\frac{T_n - T_n^*}{a_n}, \frac{M_n^+}{T_n^*}\right) \xrightarrow[n \to +\infty]{(d)} (\mathcal{T}, \mathcal{M}),$$

where $\mathcal{T} \sim \mathcal{N}(0,1)$ and $\mathcal{M} \sim \frac{\pi}{2} \sin(\pi y) \mathbb{1}_{[0,1]}(y) dy$ are independent.

• Assume that $\lim_{n \to \infty} n^{-1/4} h_n = +\infty$ and $\lim_{n \to \infty} n^{-1} h_n = 0$.

$$\exists (\mathcal{A}_n)_{n\geq 1} \subseteq \{0,1\}, \quad \lim_{n\to\infty} \mathbf{P}_{n,h_n} \big(T_n - \lfloor T_n^* - 2 \rfloor \notin \mathcal{A}_n \big) = 0.$$

We want to find the typical events under $\mathbf{P}_{n,h}^{\omega,\beta}$.

- A 🗐

We want to find the typical events under $\mathbf{P}_{n,h}^{\omega,\beta}$.

$$\xi_n \xrightarrow[n \to \infty]{\mathbf{P}_{n,h}^{\omega,\beta}} \xi \quad \Longleftrightarrow \quad \forall \varepsilon > 0, \lim_{n \to \infty} \mathbf{P}_{n,h}^{\omega,\beta} \left(|\xi_n - \xi| > \varepsilon \right) = 0.$$

B > 4 B >

We want to find the typical events under $\mathbf{P}_{n,h}^{\omega,\beta}$.

$$\xi_n \xrightarrow{\mathbf{P}_{n,h}^{\omega,\beta}} \xi \quad \Longleftrightarrow \quad \forall \varepsilon > 0, \lim_{n \to \infty} \mathbf{P}_{n,h}^{\omega,\beta} \left(|\xi_n - \xi| > \varepsilon \right) = 0.$$

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define $c_h := (\pi^2 h^{-1})^{1/3}$. Then, for any $h, \beta > 0$, \mathbb{P} -almost surely we have the following convergence

$$\lim_{n \to \infty} \frac{1}{n^{1/3}} \log Z_{n,h}^{\omega,\beta} = -\frac{3}{2} (\pi h)^{2/3}, \qquad n^{-1/3} |\mathcal{R}_n| \xrightarrow{\mathbf{P}_{n,h}^{\omega,\beta}}_{n \to \infty} c_h.$$

(B) (A) (B)

We want to find the typical events under $\mathbf{P}_{n,h}^{\omega,\beta}$.

$$\xi_n \xrightarrow[n \to \infty]{} \xi_n \longleftrightarrow \quad \forall \varepsilon > 0, \lim_{n \to \infty} \mathbf{P}_{n,h}^{\omega,\beta} \left(|\xi_n - \xi| > \varepsilon \right) = 0.$$

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define $c_h := (\pi^2 h^{-1})^{1/3}$. Then, for any $h, \beta > 0$, \mathbb{P} -almost surely we have the following convergence

$$\lim_{n \to \infty} \frac{1}{n^{1/3}} \log Z_{n,h}^{\omega,\beta} = -\frac{3}{2} (\pi h)^{2/3}, \qquad n^{-1/3} |\mathcal{R}_n| \xrightarrow[n \to \infty]{\mathbf{P}_{n,h}^{\omega,\beta}} c_h.$$

At first order, the size of the range is deterministic.

We want to find the typical events under $\mathbf{P}_{n,h}^{\omega,\beta}$.

$$\xi_n \xrightarrow[n \to \infty]{} \xi_n \iff \forall \varepsilon > 0, \lim_{n \to \infty} \mathbf{P}_{n,h}^{\omega,\beta} (|\xi_n - \xi| > \varepsilon) = 0.$$

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define $c_h := (\pi^2 h^{-1})^{1/3}$. Then, for any $h, \beta > 0$, \mathbb{P} -almost surely we have the following convergence

$$\lim_{n \to \infty} \frac{1}{n^{1/3}} \log Z_{n,h}^{\omega,\beta} = -\frac{3}{2} (\pi h)^{2/3}, \qquad n^{-1/3} |\mathcal{R}_n| \xrightarrow{\mathbf{P}_{n,h}^{\omega,\beta}}_{n \to \infty} c_h.$$

At first order, the size of the range is deterministic. The main contribution to $Z_{n,h}^{\omega,\beta}$ is given by trajectories with range $\sim c_h n^{1/3}$.

< E

10/14

Theorem

For any $h, \beta > 0$, we have the following \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{1}{\beta n^{1/6}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} \right) = \sup_{0 \le u \le c_h} \left\{ X_u^{(1)} + X_{c_h-u}^{(2)} \right\} \,,$$

with $X^{(1)}, X^{(2)}$ two independent Brownian motions.

(B) (A) (B)

Theorem

For any $h, \beta > 0$, we have the following \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{1}{\beta n^{1/6}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} \right) = \sup_{0 \le u \le c_h} \left\{ X_u^{(1)} + X_{c_h-u}^{(2)} \right\} \,,$$

with $X^{(1)}, X^{(2)}$ two independent Brownian motions. Furthermore, $u_* := \underset{u \in [0,c_h]}{\operatorname{arg\,max}} X_u^{(1)} + X_{c_h-u}^{(2)}$ is \mathbb{P} -a.s. unique and

$$n^{-1/3}(M_n^-, M_n^+) \xrightarrow{\mathbf{P}_{n,h}^{\omega,\beta}} (-u_*, c_h - u_*) \qquad \mathbb{P}-a.s.$$

Theorem

For any $h, \beta > 0$, we have the following \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{1}{\beta n^{1/6}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} \right) = \sup_{0 \le u \le c_h} \left\{ X_u^{(1)} + X_{c_h-u}^{(2)} \right\} \,,$$

with $X^{(1)}, X^{(2)}$ two independent Brownian motions. Furthermore, $u_* := \underset{u \in [0,c_h]}{\operatorname{arg max}} X_u^{(1)} + X_{c_h-u}^{(2)}$ is \mathbb{P} -a.s. unique and

$$n^{-1/3}(M_n^-, M_n^+) \xrightarrow[n \to \infty]{\mathbf{P}_{n,h}^{\omega,\beta}} (-u_*, c_h - u_*) \qquad \mathbb{P} - a.s.$$

In particular, $n^{-1/3}\mathcal{R}_n \to [-u_*, c_h - u_*]$ (under $\mathbf{P}_{n,h}^{\omega,\beta}, \mathbb{P}-a.s.$).

Theorem

For any $h, \beta > 0$, we have the following \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{1}{\beta n^{1/6}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} \right) = \sup_{0 \le u \le c_h} \left\{ X_u^{(1)} + X_{c_h-u}^{(2)} \right\} \,,$$

with $X^{(1)}, X^{(2)}$ two independent Brownian motions. Furthermore, $u_* := \underset{u \in [0,c_h]}{\operatorname{arg max}} X_u^{(1)} + X_{c_h-u}^{(2)}$ is \mathbb{P} -a.s. unique and

$$n^{-1/3}(M_n^-, M_n^+) \xrightarrow[n \to \infty]{\mathcal{P}_{n,h}^{\omega,\beta}} (-u_*, c_h - u_*) \qquad \mathbb{P}-a.s.$$

In particular, $n^{-1/3}\mathcal{R}_n \to [-u_*, c_h - u_*]$ (under $\mathbf{P}_{n,h}^{\omega,\beta}, \mathbb{P}-a.s.$).

The location of the range is **P**-deterministic: it only depends on the realisation ω through $X_u = X_u^{(1)} + X_{c_h-u}^{(2)}$.

What is the scale/law of $U_n = M_n^- + u_* n^{1/3}$ or $V_n = (c_h - u_*)n^{1/3} - M_n^+$?

- E

What is the scale/law of $U_n = M_n^- + u_* n^{1/3}$ or $V_n = (c_h - u_*)n^{1/3} - M_n^+$?

Theorem

Suppose $\mathbb{E}\left[|\omega_0|^{3+\eta}\right] < \infty$ for some positive η , we have the \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{\sqrt{2}}{\beta n^{1/9}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} - \beta n^{1/6} X_{u_*} \right) = \sup_{u,v} \left\{ \mathcal{Y}_{u,v} - c_{h,\beta} (u+v)^2 \right\}$$

where $\mathcal{Y}_{u,v} := \mathbf{Y}_u - \mathbf{Y}_{-v} - \chi(\mathbf{B}_u + \mathbf{B}_v)$ with **B** a two-sided BES₃, **Y** a two-sided standard Brownian motion.

What is the scale/law of $U_n = M_n^- + u_* n^{1/3}$ or $V_n = (c_h - u_*)n^{1/3} - M_n^+$?

Theorem

Suppose $\mathbb{E}\left[|\omega_0|^{3+\eta}\right] < \infty$ for some positive η , we have the \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{\sqrt{2}}{\beta n^{1/9}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} - \beta n^{1/6} X_{u_*} \right) = \sup_{u,v} \left\{ \mathcal{Y}_{u,v} - c_{h,\beta} (u+v)^2 \right\}$$

where $\mathcal{Y}_{u,v} := \mathbf{Y}_u - \mathbf{Y}_{-v} - \chi(\mathbf{B}_u + \mathbf{B}_v)$ with **B** a two-sided BES₃, **Y** a two-sided standard Brownian motion.

Moreover, $(\mathcal{U}, \mathcal{V}) := \arg \max_{u,v} \{\mathcal{Y}_{u,v} - c_{h,\beta}(u+v)^2\}$ is \mathbb{P} -a.s. well-defined, unique, and we have

$$\frac{1}{n^{2/9}} \left(U_n, V_n \right) \xrightarrow{\mathbf{P}_{n,h}^{\omega, \beta}}_{n \to \infty} \left(\mathcal{U}, \mathcal{V} \right) \quad \mathbb{P}-a.s.$$

What is the scale/law of $U_n = M_n^- + u_* n^{1/3}$ or $V_n = (c_h - u_*)n^{1/3} - M_n^+$?

Theorem

Suppose $\mathbb{E}\left[|\omega_0|^{3+\eta}\right] < \infty$ for some positive η , we have the \mathbb{P} -a.s. convergence

$$\lim_{n \to \infty} \frac{\sqrt{2}}{\beta n^{1/9}} \left(\log Z_{n,h}^{\omega,\beta} + \frac{3}{2} h c_h n^{1/3} - \beta n^{1/6} X_{u_*} \right) = \sup_{u,v} \left\{ \mathcal{Y}_{u,v} - c_{h,\beta} (u+v)^2 \right\}$$

where $\mathcal{Y}_{u,v} := \mathbf{Y}_u - \mathbf{Y}_{-v} - \chi(\mathbf{B}_u + \mathbf{B}_v)$ with **B** a two-sided BES₃, **Y** a two-sided standard Brownian motion.

Moreover, $(\mathcal{U}, \mathcal{V}) := \arg \max_{u,v} \{\mathcal{Y}_{u,v} - c_{h,\beta}(u+v)^2\}$ is \mathbb{P} -a.s. well-defined, unique, and we have

$$\frac{1}{n^{2/9}}\left(U_n,V_n\right) \xrightarrow[n \to \infty]{\mathbf{P}_{n,h}^{\omega,\beta}} \left(\mathcal{U},\mathcal{V}\right) \quad \mathbb{P}-a.s.$$

Again, this is **P**-deterministic.

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

< 3 b

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

Theorem (Ding, Xu, 2019)

Write τ for the hitting time of \mathcal{O}_p then there exist \mathbb{P} -measurable regions \mathcal{U}_n , distant from at least $n(\log n)^{-\gamma}$ and with poly-logarithmic volume, and a random time $T_n = o(n)$ such that $\mathbf{P}\left(S_{[T,n]\subseteq \mathcal{U}_n} \mid \tau > n\right) \to 1$.

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

Theorem (Ding, Xu, 2019)

Write τ for the hitting time of \mathcal{O}_p then there exist \mathbb{P} -measurable regions \mathcal{U}_n , distant from at least $n(\log n)^{-\gamma}$ and with poly-logarithmic volume, and a random time $T_n = o(n)$ such that $\mathbf{P}\left(S_{[T,n]\subseteq \mathcal{U}_n} \mid \tau > n\right) \to 1$.

Goal: replace \mathcal{O}_p by the random interlacement $\mathscr{I}^u, u > 0$.

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

Theorem (Ding, Xu, 2019)

Write τ for the hitting time of \mathcal{O}_p then there exist \mathbb{P} -measurable regions \mathcal{U}_n , distant from at least $n(\log n)^{-\gamma}$ and with poly-logarithmic volume, and a random time $T_n = o(n)$ such that $\mathbf{P}\left(S_{[T,n]\subseteq \mathcal{U}_n} \mid \tau > n\right) \to 1$.

 $\begin{array}{ll} \mbox{Goal: replace \mathcal{O}_p by the random interlacement $\mathscr{I}^u, u > 0$.} \\ \mathscr{I}^u$ is a random subset of \mathbb{Z}^d caracterized by} \end{array}$

$$\mathbb{P}\left(K \cap \mathscr{I}^u = \varnothing\right) = e^{-u \operatorname{cap}[K]}$$

with cap $[K] = \sum_{x \in K} \mathbf{P}_x \left(S_{[1,+\infty]} \cap K = \varnothing \right)$ the capacity of $K \subset \mathbb{Z}^d$.

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

Theorem (Ding, Xu, 2019)

Write τ for the hitting time of \mathcal{O}_p then there exist \mathbb{P} -measurable regions \mathcal{U}_n , distant from at least $n(\log n)^{-\gamma}$ and with poly-logarithmic volume, and a random time $T_n = o(n)$ such that $\mathbf{P}\left(S_{[T,n]\subseteq \mathcal{U}_n} \mid \tau > n\right) \to 1$.

 $\begin{array}{l} \mbox{Goal: replace \mathcal{O}_p by the random interlacement $\mathcal{I}^u, u > 0$.} \\ \mathcal{I}^u$ is a random subset of \mathbb{Z}^d caracterized by} \end{array}$

$$\mathbb{P}\left(K \cap \mathscr{I}^u = \varnothing\right) = e^{-u \operatorname{cap}[K]}$$

with cap $[K] = \sum_{x \in K} \mathbf{P}_x \left(S_{[1,+\infty]} \cap K = \varnothing \right)$ the capacity of $K \subset \mathbb{Z}^d$.

Conjecture: There exist almost-empty regions \mathscr{R} at distance $n(\log n)^{-\mu}$ with size $(\log n)^{\lambda}$ such that $S_{[o(n),n]} \subseteq \mathscr{R}$.

(日) (四) (日) (日) (日)

Recall Bernoulli percolation $\mathcal{O}_p = \{z \in \mathbb{Z}^d : \eta_z = 1\}$ with $\eta_z \sim \text{Ber}(p)$.

Theorem (Ding, Xu, 2019)

Write τ for the hitting time of \mathcal{O}_p then there exist \mathbb{P} -measurable regions \mathcal{U}_n , distant from at least $n(\log n)^{-\gamma}$ and with poly-logarithmic volume, and a random time $T_n = o(n)$ such that $\mathbf{P}\left(S_{[T,n]\subseteq \mathcal{U}_n} \mid \tau > n\right) \to 1$.

 $\begin{array}{l} \mbox{Goal: replace \mathcal{O}_p by the random interlacement $\mathcal{I}^u, u > 0$.} \\ \mathcal{I}^u$ is a random subset of \mathbb{Z}^d caracterized by} \end{array}$

$$\mathbb{P}\left(K \cap \mathscr{I}^u = \varnothing\right) = e^{-u \operatorname{cap}[K]}$$

with cap $[K] = \sum_{x \in K} \mathbf{P}_x \left(S_{[1,+\infty]} \cap K = \varnothing \right)$ the capacity of $K \subset \mathbb{Z}^d$.

Conjecture: There exist almost-empty regions \mathscr{R} at distance $n(\log n)^{-\mu}$ with size $(\log n)^{\lambda}$ such that $S_{[o(n),n]} \subseteq \mathscr{R}$.

Mostly done with the same ideas as Ding & Xu.

(日本)

The annealed partition function of $H_n^u = \infty \mathbb{1}_{\{\mathcal{R}_n \cap \mathscr{I}^u\}}$ is given by

$$\mathbf{E}\left[\mathbb{P}\left(\mathcal{R}_{n}\cap\mathscr{I}^{u}=\varnothing\right)\right]=\mathbf{E}\left[e^{-u\mathrm{cap}\left[\mathcal{R}_{n}\right]}\right]$$

→

The annealed partition function of $H_n^u = \infty \mathbb{1}_{\{\mathcal{R}_n \cap \mathscr{I}^u\}}$ is given by

$$\mathbf{E}\left[\mathbb{P}\left(\mathcal{R}_{n}\cap\mathscr{I}^{u}=\varnothing\right)\right]=\mathbf{E}\left[e^{-u\mathrm{cap}\left[\mathcal{R}_{n}\right]}\right]$$

Goal: Donsker-Varadhan type theorem for cap $[\mathcal{R}_n]$. We conjecture

$$n^{-\frac{d-2}{d}}\log \mathbf{E}\left[e^{-u\mathrm{cap}[\mathcal{R}_n]}\right] \xrightarrow[n \to +\infty]{} k(u,d) \,.$$

→

The annealed partition function of $H_n^u = \infty \mathbb{1}_{\{\mathcal{R}_n \cap \mathscr{I}^u\}}$ is given by

$$\mathbf{E}\left[\mathbb{P}\left(\mathcal{R}_{n}\cap\mathscr{I}^{u}=\varnothing\right)\right]=\mathbf{E}\left[e^{-u\mathrm{cap}\left[\mathcal{R}_{n}\right]}\right]$$

Goal: Donsker-Varadhan type theorem for cap $[\mathcal{R}_n]$. We conjecture

$$n^{-\frac{d-2}{d}}\log \mathbf{E}\left[e^{-u\operatorname{cap}[\mathcal{R}_n]}\right] \xrightarrow[n \to +\infty]{} k(u,d).$$

Optimal strategy: fold into a ball of radius $\approx n^{1/d}$ without filling it.

B > 4 B >

The annealed partition function of $H_n^u = \infty \mathbb{1}_{\{\mathcal{R}_n \cap \mathscr{I}^u\}}$ is given by

$$\mathbf{E}\left[\mathbb{P}\left(\mathcal{R}_{n}\cap\mathscr{I}^{u}=\varnothing\right)\right]=\mathbf{E}\left[e^{-u\mathrm{cap}\left[\mathcal{R}_{n}\right]}\right]$$

Goal: Donsker-Varadhan type theorem for cap $[\mathcal{R}_n]$. We conjecture

$$n^{-\frac{d-2}{d}}\log \mathbf{E}\left[e^{-u\operatorname{cap}[\mathcal{R}_n]}\right] \xrightarrow[n \to +\infty]{} k(u,d).$$

Optimal strategy: fold into a ball of radius $\approx n^{1/d}$ without filling it.

At distance r from the center, the walk locally resembles a random interlacement with density $\propto \cos^2(r)$.

B > 4 B >

The annealed partition function of $H_n^u = \infty \mathbb{1}_{\{\mathcal{R}_n \cap \mathscr{I}^u\}}$ is given by

$$\mathbf{E}\left[\mathbb{P}\left(\mathcal{R}_{n}\cap\mathscr{I}^{u}=\varnothing\right)\right]=\mathbf{E}\left[e^{-u\mathrm{cap}\left[\mathcal{R}_{n}\right]}\right]$$

Goal: Donsker-Varadhan type theorem for cap $[\mathcal{R}_n]$. We conjecture

$$n^{-\frac{d-2}{d}}\log \mathbf{E}\left[e^{-u\operatorname{cap}[\mathcal{R}_n]}\right] \xrightarrow[n \to +\infty]{} k(u,d).$$

Optimal strategy: fold into a ball of radius $\approx n^{1/d}$ without filling it.

At distance r from the center, the walk locally resembles a random interlacement with density $\propto \cos^2(r)$.

We conjecture a phase diagram for cap $[R_n]$ when taking u = u(n) depending on the asymptotics of u(n).

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで