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Polymer = long chain of small molecules (monomers)
Interacts with a "stable" environment (heat bath).

Thermodynamics → canonical ensemble
T is the temperature of the system and Z is a normalizing

constant (partition function).

kB := 1.380649× 10−23 kg.m2/s2.K is the Boltzmann constant.
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{
S = (Si)

n
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The path is taken according to the random walk law P, and then

weighted by its energy.
The energy is a map Hn : Wn −→ R+ ∪ {+∞} that modelizes

physical interactions

Polymer measure: Gibbs transformation of P given by

Pβ
n(S) =

1

Zβ
n

e−βHn(S)P(S)

with β = 1/kBT and Zβ
n := E

[
e−βHn(S)

]
the partition function.
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random environment on (Ω,F ,P) −→ random Hamiltonian Hω
n

We can de�ne two polymer measures depending on the model:

� The quenched measure: we get a random Gibbs measure

Pβ
n,ω(S) =

1

Zβ
n,ω

e−βHω
n (S)P(S)

which corresponds to a �xed realization of the environment.

� The annealed measure: we get a deterministic measure

Pβ
n(S) =

1

Zβ
n

E
[
e−βHω

n (S)
]
P(S)

where the environment plays a part in the equilibrium (most probable
and most favorable realizations).
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}
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De�ne Rn(S) = {S0, . . . , Sn} = S[0,n] the range of S at time n.

random walk killed by Op −→ Hη
n(S) = +∞1{Rn(S)∩Op ̸=∅}.

The quenched measure is

Pη
n,p(S) =

1

Zη
n,p

1{S∩Op=∅}P(S) = P(S |S ∩ Op = ∅)

The annealed measure is

Pp
n(S) =

1

Zp
n
Ep

[
1{S∩Op=∅}

]
P(S) =

1

Zp
n
e|Rn(S)| log(1−p)P(S)
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Generalization: take independent ηz ∼ Ber(pz) with i.i.d. (pz)z∈Zd .
O obstacle set. The doubly quenched measure is

Pn(S) =
1

Zn
1{Rn(S)∩O=∅}P(S) → quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.

Take pz = 1− eβωz−h where ωz are i.i.d., the percolation is annealed
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1
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n,ω

∏
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(1− pz)P(S) =
1
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e
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This model is the random walk penalized by the sum of h− βωz

sitting on the range, with quenched ωz.
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� β = 0: homogeneous environment, we allow h = hn and write
Pn,hn

= Pω,0
n,hn

→ shrinking at a size f(hn).

� β > 0: reach the sites with high values for ω, avoid those with highly
negative values.
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1

Zω,β
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exp
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βωz − h

))
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Important: each energy cost is only taken once!

� β = 0: homogeneous environment, we allow h = hn and write
Pn,hn = Pω,0

n,hn
→ shrinking at a size f(hn).

� β > 0: reach the sites with high values for ω, avoid those with highly
negative values.

We are interested in the edges localization, meaning asymptotics for

M−
n = min

k≤n
Sk , M+

n = max
k≤n

Sk



Homogeneous model (β = 0): phase transition

8/16 Nicolas Bouchot Localization of a polymer in a random environment - Bernoulli & Interlacements



Homogeneous model (β = 0): phase transition

8/16 Nicolas Bouchot Localization of a polymer in a random environment - Bernoulli & Interlacements

De�ne R∗
n =

(
nπ2

hn

)1/3

and an =
(R∗

n)
2

√
3nπ2

=
1√
3

(
nπ2

h4
n

)1/6
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De�ne R∗
n =

(
nπ2

hn

)1/3

and an =
(R∗

n)
2

√
3nπ2

=
1√
3

(
nπ2

h4
n

)1/6

Theorem

� Assume that n−1/2(log n)3/2 ≤ hn ≪ n1/4, then(
|Rn| −R∗

n

an
,
M+

n

R∗
n

)
(d)−−−−−→

n→+∞
(R,M),

where R ∼ N (0, 1) andM∼ π
2 sin(πy)1[0,1](y)dy are independent.

� Assume that n1/4 ≪ hn ≪ n, then.

∀n ≥ 1,∃An ⊆ {0, 1} , lim
n→∞

Pn,hn

(
|Rn| − ⌊R∗

n − 2⌋ ̸∈ An

)
= 0.
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We want to �nd the typical events under Pω,β
n,h .

ξn
Pω,β

n,h−−−−→
n→∞

ξ ⇐⇒ ∀ε > 0, lim
n→∞

Pω,β
n,h (|ξn − ξ| > ε) = 0 .

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, de�ne ch := (π2h−1)1/3. Then, for any h, β > 0, P-almost

surely we have the following convergence

lim
n→∞

1

n1/3
logZω,β

n,h = −3

2
(πh)2/3, n−1/3|Rn|

Pω,β
n,h−−−−→

n→∞
ch .

At �rst order, the size of the range is deterministic and is identical to the case
β = 0.

The main contribution to Zω,β
n,h is given by trajectories with range ∼ chn

1/3.
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In particular, n−1/3Rn → [−u∗, ch − u∗] (under P
ω,β
n,h , P− a.s.).

The location of the range is P-deterministic: it only depends on the

realization ω through Xu := X
(1)
u +X

(2)
ch−u.
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Fluctuations around u∗
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What is the scale/law of Un := M−
n + u∗n

1/3 or Vn := (ch − u∗)n
1/3 −M+

n ?

Theorem

Suppose E
[
|ω0|3+δ

]
<∞ for some positive δ, we have the P-a.s. convergence

lim
n→∞

√
2

βn1/9

(
logZω,β

n,h +
3

2
hchn

1/3 − βn1/6Xu∗

)
= sup

u,v

{
Yu,v − ch,β

(
u+ v

)2} P-a.s.

where Yu,v := Yu −Y−v − χ(Bu +Bv) with B a two-sided BES3, Y a

two-sided standard Brownian motion.

Moreover, (U ,V) := argmaxu,v{Yu,v − ch,β(u+ v)2} is P-a.s. well-de�ned,
unique, and we have

1

n2/9
(Un, Vn)

Pω,β
n,h−−−−→

n→∞
(U ,V) P− a.s.

Again, this is P-deterministic.
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From Bernoulli to interlacements
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Recall Bernoulli percolation Op =
{
z ∈ Zd : ηz = 1

}
with ηz ∼ Ber(p).

Goal: replace Op by the random interlacement I (u), u > 0.
new Hamiltonian: Hu

n = +∞1{Rn∩I (u)̸=∅}.

I (u) is a random subset of Zd, d ≥ 3 caracterized by:

for all �nite set K, P (K ∩I (u) = ∅) = e−ucap[K]

with cap [K] =
∑

x∈K Px

(
S[1,+∞] ∩K = ∅

)
the capacity of K ⊂ Zd.

I (u) ∩K is the trace of P(ucap [K]) independent SRW starting from the
harmonic measure of K.

For this talk: focus on the annealed measure.
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WIP: Annealed polymer in interlacement
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The annealed partition function is given by

E
[
E
[
1{Rn∩I (u)=∅}

]]
= E [P (Rn ∩I (u) = ∅)] = E

[
e−ucap[Rn]

]
Goal: Donsker-Varadhan type theorem for cap [Rn]. We conjecture

lim
n→+∞

n− d−2
d logE

[
e−ucap[Rn]

]
= inf

f∈H1

{
ucapR(Ψ(f)) +

1

2d

ˆ
Rd

|∇f |2
}

.

Optimal strategy: asymptotically fold into a ball B(n1/d).
n1/d, d ≥ 3 is critical for the volume of the constrained random walk

lim
n→+∞

E

[
|Rn|
|B(rnγ)|

∣∣∣Rn ⊆ B(rnγ)

]
=


1 if γ < 1/d ,

δr ∈ (0, 1) if γ = 1/d ,

0 if γ > 1/d .

→ what about capacity ?
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The annealed partition function is given by

E
[
E
[
1{Rn∩I (u)=∅}

]]
= E [P (Rn ∩I (u) = ∅)] = E

[
e−ucap[Rn]

]
Goal: Donsker-Varadhan type theorem for cap [Rn]. We conjecture

lim
n→+∞

n− d−2
d logE

[
e−ucap[Rn]

]
= inf

f∈H1

{
ucapR(Ψ(f)) +

1

2d

ˆ
Rd

|∇f |2
}

.
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We also have cap [K] = lim|x|→∞ |x|d−2Px (S hits K)
→ quanti�es how big K is for a random walk that is "far away".

Conjecture = the SRW conditioned to stay in B(n1/d) should still "looks like
a ball" from far away.

via coupling, SRW in ball B(nγ) is locally close to I (n1−γd).
→ New question: what is the capacity of I (un) ∩B(ρn) when un → 0 and

ρn → +∞ ?

Theorem

In d ≥ 3, there is an explicit Θd
n such that

cap [I (un) ∩B(ρn)]

cap [B(ρn)]
−−−−−→
n→+∞

0 if lim
n→∞

unΘ
d
n = 0 ,

1 if lim
n→∞

unΘ
d
n = +∞ .

for d ≥ 5, γ = 1
d−2 is critical → volume at dimension d− 2 !!!
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For d = 3, the transition occurs for unρn → α > 0, which also corresponds to
uncap [B(ρn)]→ α thus on average I (un) ∩B(ρn) is α SRW trajectories

"the more α increases, the more I (un) ∩B(ρn) looks like the full ball."
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For d = 3, the transition occurs for unρn → α > 0, which also corresponds to
uncap [B(ρn)]→ α thus on average I (un) ∩B(ρn) is α SRW trajectories

"the more α increases, the more I (un) ∩B(ρn) looks like the full ball."
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Thank you!


