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What is a polymer 7

Polymer = long chain of small molecules (monomers)
Interacts with a "stable" environment (heat bath).

Thermodynamics — canonical ensemble
At equilibrium, the probability of observing the polymer in an
internal state S with energy E(S) is given by
1
P(S) = —e—E(S)/kpT
(5) = e

T is the temperature of the system and Z is a normalizing
constant (partition function).

kp = 1.380649 x 10~23kg.m?/s2.K is the Boltzmann constant.
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Mathematical model

polymer of length n +— path of length n in Z¢
W, = {S = (8 € (ZN™ 1 V0 < < n,|Sip1 — Sil1 = 1}

The path is taken according to the random walk law P, and then
weighted by its energy.
The energy is a map H,, : W,, — R} U {400} that modelizes
physical interactions

Polymer measure: Gibbs transformation of P given by
1 _
PI(S) = —ze P ()

n

with 8 = 1/kgT and Z° := E [e’BH"(S)} the partition function.

Localization of a polymer in a random environment -



Annealed & Quenched polymer measure

Localization of a polymer in a random environment -



Annealed & Quenched polymer measure

random environment on (Q2,.#,P) — random Hamiltonian HY
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random environment on (Q2,.#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model:
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Annealed & Quenched polymer measure

random environment on (Q2,.#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model:

e The quenched measure: we get a random Gibbs measure

n,w

P’ (S) = %B—BHZ(S)P(S)

n,w

which corresponds to a fixed realization of the environment.
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Annealed & Quenched polymer measure

random environment on (Q2,.#,P) — random Hamiltonian HY
We can define two polymer measures depending on the model:

e The quenched measure: we get a random Gibbs measure

n,w

1 w
P? (S) = Te_BH"(S)P(S)
n,w
which corresponds to a fixed realization of the environment.
e The annealed measure: we get a deterministic measure

1 _gHw
Pi(8)= 5 |~ PH )] P(s)

n

where the environment plays a part in the equilibrium (most probable
and most favorable realizations).
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
Define R,,(S) = {So,...,Sn} = Sjo,5,) the range of S at time n.

random walk killed by O, — H]!(S) = +00lr,, (s)n0, -0}

The quenched measure is

1
Pn (S) ZY]
n,p

n,p

lisno,=2}P(S) =P(S|SN O, = 2)
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Polymer in a Bernoulli percolation

Obstacle set O, = {z € Z% : n, = 1} with 7, ~ Ber(p) i.i.d.
Define R,,(S) = {So,...,Sn} = Sjo,5,) the range of S at time n.

random walk killed by O, — H]!(S) = +00lr,, (s)n0, -0}

The quenched measure is

1
zZl,

P p(5) =

n,p ]]-{SOOP—Z}P(S) = P(S | S n Op == @)

The annealed measure is

1 1 _
PP(S) = ZT]EP [l{smp:g}] P(S) = Z—pe‘Rn(S)“Og“ p)P(S)

n
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Generalization: take independent 1, ~ Ber(p,) with i.i.d. (p.),eza-
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
Take p, = 1 — P~ where w, are i.i.d., the percolation is annealed

1 1
PZ:UBJ(S) = Zh’ﬂ H (1 _pz)P(S) = Zh’ﬁ
"W ZeRL(S) nw

) )
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Inhomogeneous Bernoulli percolation

Generalization: take independent 1. ~ Ber(p,) with i.i.d. (p.),eza.
O obstacle set. The doubly quenched measure is

1
P,.(S) = 71{Rn(3)n0:z}P(S) — quite complicated!

Natural: study the partially annealed models, meaning either the percolation
or the parameters.
Take p, = 1 — P~ where w, are i.i.d., the percolation is annealed

1 1
PZ:UBJ(S) = Zh’ﬂ H (1 _pz)P(S) = Zh’ﬁ
W LeR,(S) n,w

e )

This model is the random walk penalized by the sum of A — Sw,
sitting on the range, with quenched w,.
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Our model

Random walk in Z (law P) + environment w = (w,
(law PP) with E [wo] = 0,E [w}] =

)2ez 1.i.d. variables
1

Localization of a polymer in a random environment -



Our model

Random walk in Z (law P) + environment w = (w
(law PP) with E [wo] = 0,E [w}] =

2z 1.1.d. variables

=)
1.

For h > 0, > 0, the quenched polymer measure is

1
Pﬁf(S) = Wexp( Z (ﬁwz—h))P(S).
n,h 2ERA(S)

Important: each energy cost is only taken once!
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Random walk in Z (law P) + environment w = (w
(law PP) with E [wo] = 0,E [w}] =

2z 1.1.d. variables

=)
1.

For h > 0, > 0, the quenched polymer measure is

1
Pﬁf(S) = Wexp( Z (ﬁwz—h))P(S).
n,h 2ERA(S)

Important: each energy cost is only taken once!

e 5=0: homogeneous environment, we allow h = h,, and write
P, =P n, — shrinking at a size f(hy,).
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Our model

Random walk in Z (law P) + environment w = (w, )¢z i.i.d. variables

=)
(law PP) with E [wo] = 0,E [w] = 1.

For h > 0, > 0, the quenched polymer measure is

Pﬁf(S) —ﬁexp( Z (ﬁwz—h))P(S).

n,h 2€ERA(S)

Important: each energy cost is only taken once!
e 5=0: homogeneous environment, we allow h = h,, and write
P, =P n, — shrinking at a size f(hy,).
e (3 > 0: reach the sites with high values for w, avoid those with highly
negative values.

Vicolas Bouchot Localization of a polymer in a random environment -




Our model

Random walk in Z (law P) + environment w = (w,).ez 1.i.d. variables
(law PP) with E [wo] = 0,E [w] = 1.

For h > 0, > 0, the quenched polymer measure is

Pﬁf(S) —ﬁexp( Z (ﬁwz—h))P(S).

n,h 2€ERA(S)

Important: each energy cost is only taken once!
e 5=0: homogeneous environment, we allow h = h,, and write
P, =P n, — shrinking at a size f(hy,).
e (3 > 0: reach the sites with high values for w, avoid those with highly
negative values.
We are interested in the edges localization, meaning asymptotics for

M, = min Sy, M, = max S,
k<n k<n
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Homogeneous model (f = 0): phase transition
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0): phase transition

2y 1/3 *2 2\ 1/6
Define R} = (m) and a, = (Fn)” L (mr >

Vanme V3 E
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0): phase transition

TL7T2>1/3 (R*)2 1 <7’L7T2>1/6
Define R} = | — and a, = n, .~ [0
( V3nr2 V3 \ hi

Theorem

e Assume that n='/%(logn)?/? < h, < n'/*, then

n| ; MJr
('R' R) —D (=, M),

A, R;’; n—+00

where R ~ N(0,1) and M ~ Zsin(my)1,1)(y)dy are independent.
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0): phase transition

TL7T2>1/3 (R*)2 1 <7’L7T2>1/6
Define R} = | — and a, = n, .~ [0
( V3nr2 V3 \ hi

Theorem

e Assume that n='/%(logn)?/? < h, < n'/*, then

n| ; MJr
('R' R) —D (=, M),

A, R;’; n—+00

where R ~ N(0,1) and M ~ Zsin(my)1,1)(y)dy are independent.
o Assume that n'/* < h, < n, then.

V¥n >1,3A4, € {0,1}, lim P, (IRn] — R —2] € A,) =0.
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

w,B

P
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

w,B

P
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

w,B

P
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G

At first order, the size of the range is deterministic and is identical to the case

B=0.
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Influence of the disorder (5 > 0)

We want to find the typical events under Pﬁf

Pwyﬂ
b —"2 & == Ve >0, lim PYP (|6, — € > ) =0.

Theorem (Berger, Huang, Torri, Wei (2022))

For all h > 0, define ¢, == (w2h~")'/3. Then, for any h, 8 > 0, P-almost
surely we have the following convergence

1 3 pes
g - wpB _ 2 2/3 -1/3 n,h
nh—>H;o nl/3 log Z,, 1 2(7rh) ) w IRn e G

At first order, the size of the range is deterministic and is identical to the case
B8 =0.

The main contribution to Z:fj is given by trajectories with range ~ ¢,n'/3

LPSM
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
: wpB , 9 1/3) _ { (1) (2) }
nhm Bnlfs (log Zyh + 2hchn > sup X, +X ,

Chp—U
0<u<cp

with XM, X two independent Brownian motions.
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1 3
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with XM, X two independent Brownian motions.

Furthermore, u, := arg max{Xle) + Xéf)_u} is P-a.s. unique and
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Localization

Theorem

For any h, 8 > 0, we have the following P-a.s. convergence

1 3
. w,B 1/3 { (1) (2) }
nhm Bnije (log anh + 72hchn > = sup X, +Xch wl

0<u<cp

with XM, X two independent Brownian motions.

Furthermore, u, := arg max{Xle) + Xéf)_u} is P-a.s. unique and

u€[0,cp]
w,B
—-1/3 — + Pn,h
n (Mn ,Mn) m (—’LL,HCh—U/*) P—a.s.

In particular, n='/3R,, — [~u.,c, — u,] (under P:‘L’_’f, P—a.s.).

The location of the range is P-deterministic: it only depends on the

ot — y@ &)
realization w through X, := Xy~ + X7 . 2R
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Fluctuations around wu,

What is the scale/law of U, := M, 4+ u.n'/? or V,, := (¢, — u.)n'/® — M+ ?
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Fluctuations around wu,

What is the scale/law of U, := M, 4+ u.n'/? or V,, := (¢, — u.)n'/® — M+ ?

Theorem

Suppose E [|w0|3+5] < oo for some positive §, we have the P-a.s. convergence

. 2 w 3
lim ﬁn\{/g’ <log an + §hchnl/3 _ ﬁnl/GXu*) = sup {yw —Ch,B (u + U)Q}

n— oo w,v

where Yy =Y, — Y_, — x(By + B,) with B a two-sided BES;, Y a
two-sided standard Brownian motion.




Fluctuations around wu,

What is the scale/law of U, := M, 4+ u.n'/? or V,, := (¢, — u.)n'/® — M+ ?

Theorem

3
3
|
(¢
S
3

Suppose E [|w0|3+5] < oo for some positive §, we have the P-a.s. convergence

\/5 w,B 1/6 2
G e Bt ) et

where Yy =Y, — Y_, — x(By + B,) with B a two-sided BES;, Y a
two-sided standard Brownian motion.

Moreover, (U, V) = argmax,, ,{Vu,v — cn,s(u+v)?} is P-a.s. well-defined,
unique, and we have

1 P,
370 (U Vi) —= — Uu,v) P—a.s.
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Fluctuations around wu,

What is the scale/law of U, := M, 4+ u.n'/? or V,, := (¢, — u.)n'/® — M+ ?

Theorem

3
3
|
(¢
S
3

Suppose E [|w0|3+5] < oo for some positive §, we have the P-a.s. convergence

\/5 w,B 1/6 2
G e Bt ) et

where Yy =Y, — Y_, — x(By + B,) with B a two-sided BES;, Y a
two-sided standard Brownian motion.

Moreover, (U, V) = argmax,, ,{Vu,v — cn,s(u+v)?} is P-a.s. well-defined,
unique, and we have

1 P,
370 (U Vi) —= — Uu,v) P—a.s.
Again, this is P-deterministic. N,
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Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).
Goal: replace O, by the random interlacement % (u),u > 0.
new Hamiltonian: Hy} = +00l g, A7 (u)£o)}-

#(u) is a random subset of Z9, d > 3 caracterized by:
for all finite set K, P (KN .7 (u) = @) = e~ “aplK]

with cap [K] = Y, o x Pa (Spi,400) N K = @) the capacity of K C Z%.
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From Bernoulli to interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).
Goal: replace O, by the random interlacement % (u),u > 0.
new Hamiltonian: Hy} = +00l g, A7 (u)£o)}-

#(u) is a random subset of Z9, d > 3 caracterized by:
for all finite set K, P (KN .7 (u) = @) = e~ “aplK]

with cap [K] = Y, o x Pa (Spi,400) N K = @) the capacity of K C Z%.

4 (u) N K is the trace of P(ucap [K]) independent SRW starting from the
harmonic measure of K.
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From Bernoulli to interlacements

Recall Bernoulli percolation O, = {z € Z¢ : 1, = 1} with 7. ~ Ber(p).
Goal: replace O, by the random interlacement % (u),u > 0.
new Hamiltonian: Hy} = +00l g, A7 (u)£o)}-

#(u) is a random subset of Z9, d > 3 caracterized by:
for all finite set K, P (KN .7 (u) = @) = e~ “aplK]

with cap [K] = Y, o x Pa (Spi,400) N K = @) the capacity of K C Z%.

4 (u) N K is the trace of P(ucap [K]) independent SRW starting from the
harmonic measure of K.

For this talk: focus on the annealed measure.
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WIP: Annealed polymer in interlacement

The annealed partition function is given by
E [E [1(r,nsw=s]] = B[P (Ry N7 (1) = 2)] = E [ mc(Ro]
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WIP: Annealed polymer in interlacement

The annealed partition function is given by
E [E [1(r,nsw=s]] = B[P (Ry N7 (1) = 2)] = E [ mc(Ro]

Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

2 1
lim n_dTlogE |:e_ucap[Rn]} = inf {ucapR(\I’(f)) / |Vf|2}

n——+oo feH!? 2d
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The annealed partition function is given by
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Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

2 1
lim n_dTlogE |:e_ucap[Rn]} = inf {ucapR(\I’(f)) / |Vf|2}
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Optimal strategy: asymptotically fold into a ball B(n'/?).
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Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

2 1
lim n_dTlogE |:e_ucap[Rn]} = inf {ucapR(\I’(f)) / |Vf|2}.

n——+oo feH!? 2d

Optimal strategy: asymptotically fold into a ball B(n'/?).

n'/d, d > 3 is critical for the volume of the constrained random walk

Nicolas Bouchot Localization of a polymer in a random environment



WIP: Annealed polymer in interlacement

The annealed partition function is given by
E [E [1(r,nsw=s]] = B[P (Ry N7 (1) = 2)] = E [ mc(Ro]

Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

2 1
lim n_dTlogE |:e_ucap[Rn]} = inf {ucapR(\I’(f)) / |Vf|2}.

n——+oo feH!? 2d

Optimal strategy: asymptotically fold into a ball B(n'/?).

n'/d, d > 3 is critical for the volume of the constrained random walk

R, if y<1/d,

lim E|—2" | gB(rm)] !5 e(0,1) if y=1/d,

e LB(TW) ‘ if v>1/d
N,
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WIP: Annealed polymer in interlacement

The annealed partition function is given by
E [E [1(r,nsw=s]] = B[P (Ry N7 (1) = 2)] = E [ mc(Ro]

Goal: Donsker-Varadhan type theorem for cap [R,]. We conjecture

2 1
lim n_dTlogE |:e_ucap[Rn]} = inf {ucapR(\I’(f)) / |Vf|2}.

n—r+00 feH! 2d

Optimal strategy: asymptotically fold into a ball B(n'/?).

n'/d, d > 3 is critical for the volume of the constrained random walk

R, if v<1/d,

li Ei"‘ L C B(rn")| = {46, (0,1 if v =1/d,
B |y e € B | = i 00 0=
if v>1/d.

— what about capacity ?
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We also have cap [K] = lim,| o [2]?72P,, (S hits K)
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via coupling, SRW in ball B(n?) is locally close to % (nt=74).
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Mildly constrainted random walk and interlacement

We also have cap [K] = lim,| o [2]?72P,, (S hits K)
— quantifies how big K is for a random walk that is "far away".

Conjecture = the SRW conditioned to stay in B(n'/%) should still "looks like
a ball" from far away.
via coupling, SRW in ball B(n?) is locally close to % (nt=74).
— New question: what is the capacity of .#(u,) N B(py,) when u,, — 0 and
pPn — +00 7
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Mildly constrainted random walk and interlacement

We also have cap [K] = lim,| o [2]?72P,, (S hits K)
— quantifies how big K is for a random walk that is "far away".

Conjecture = the SRW conditioned to stay in B(n'/%) should still "looks like
a ball" from far away.
via coupling, SRW in ball B(n?) is locally close to % (nt=74).
— New question: what is the capacity of .#(u,) N B(py,) when u,, — 0 and
pPn — +00 7

Theorem

In d > 3, there is an explicit O% such that

cap [7 (un) N B(py)] 0 i limu,6; =0,
cap [B(pn)] notoo |1 if  lim 4,02 = +o0.
n—oo
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Mildly constrainted random walk and interlacement

We also have cap [K] = lim,| o [2]?72P,, (S hits K)
— quantifies how big K is for a random walk that is "far away".

Conjecture = the SRW conditioned to stay in B(n'/%) should still "looks like
a ball" from far away.
via coupling, SRW in ball B(n?) is locally close to % (nt=74).
— New question: what is the capacity of .#(u,) N B(py,) when u,, — 0 and
pPn — +00 7

Theorem

In d > 3, there is an explicit O% such that

cap [7 (un) N B(py)] 0 i limu,6; =0,
cap [B(pn)] notoo |1 if  lim 4,02 = +o0.
n—oo

for d > 5, v = 15 is critical — volume at dimension d — 2 !!!
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Some simulations in dimension 3

For d = 3, the transition occurs for w,p, — « > 0, which also corresponds to
uncap [B(pn)] — « thus on average . (u,) N B(py) is a SRW trajectories

"the more « increases, the more . (u,) N B(py) looks like the full ball."
fora =3




Some simulations in dimension 3

For d = 3, the transition occurs for w,p, — « > 0, which also corresponds to
uncap [B(pn)] — « thus on average . (u,) N B(py) is a SRW trajectories

"the more « increases, the more . (u,) N B(py) looks like the full ball."
fora=9
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Some simulations in dimension 3

For d = 3, the transition occurs for w,p, — « > 0, which also corresponds to
uncap [B(pn)] — « thus on average . (u,) N B(py) is a SRW trajectories

"the more « increases, the more . (u,) N B(py) looks like the full ball."
for a =27

Localization of a polymer in a random environment



Thank you!



